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1. Introduction

Reliability-based design optimization is a probabilistic design 
method which has been successfully applied into engineering fields. 
The main purpose of reliability-based design optimization is to assure 
products achieving the optimal performance with an expected reli-
ability. Nowadays, the traditional reliability based design optimiza-
tion method is hard to use in reality. For complex systems, such as 
spaceship, high-speed train, and nuclear power plant, often involve 
multi-disciplines, multi-type design variables and multi-source uncer-
tainties which interacting and coupling with each other. Therefore, 
reliability-based design in engineering practice face two difficulties, 
one is some variables in systems are fuzzy variables or interval vari-
ables, since they cannot be obtained accurately, the other is the expen-
sive computation.

A large amount of research works have been done on reliability 
assessments with interval or fuzzy variables. Huang [12] investigated 
the methods to determine the membership functions under three dif-
ferent forms of the fuzzy safety state definition. Based on the fuzzy 
comprehensive evaluation, Wu et al. [22] proposed a reliability analy-
sis method by combining with the fuzzy set theory. To solve the state 
explosion and the parametric uncertainty problems, Li et al. [14] 
proposed a dynamic reliability analysis method via the continuous-
time Bayesian networks under fuzzy numbers. Garg [9] proposed a 
fuzzy reliability analysis method based on credibility theory to solve 
the problem that all failure rates are usually assumed to follow the 
identical type of fuzzy set, and the membership and non-membership 
functions can be constructed by different types of intuitionistic fuzzy 
numbers. Tao et al. [21] developed an uncertainty model combining 
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Zagadnienie optymalizacji niezawodnościowej konstrukcji w przypadkach, gdy mamy do czynienia ze zmiennymi rozmytymi i 
przedziałowymi odgrywa ważną rolę w praktyce inżynierskiej. Problemy optymalizacji niezawodności, w których wykorzystu-
je się tylko zmienne przedziałowe można z powodzeniem rozwiązywać stosując przedziałową symulację Monte Carlo, metodę 
ekstremum czy aproksymację metodą punktu siodłowego. Kluczowe znaczenie dla analizy niezawodności oraz projektowania 
optymalizacyjnego systemów ma zatem sposób postępowania ze zmiennymi rozmytymi. Wprawdzie zmienne rozmyte można prze-
kształcać do zmiennych interwałowych za pomocą metody alfa-przekrojów, jest to jednak metoda skomplikowana i kosztowna 
obliczeniowo. Dlatego w niniejszym artykule zaproponowano równoważną metodę konwersji opartą na teorii entropii, która 
umożliwia przekształcanie zmiennych rozmytych do normalnych zmiennych losowych, pozwalając w ten sposób pominąć złożony 
proces całkowania. W oparciu o tę metodę, opracowano entropijną metodę optymalizacji sekwencyjnej i oceny niezawodności (E-
SORA), którą, w połączeniu z analizą najgorszego przypadku, można stosować do niezawodnościowej optymalizacji konstrukcji 
przy zmiennych rozmytych i przedziałowych. W przykładzie numerycznym, metodę E-SORA zastosowano w połączeniu z metodą 
podwójnej pętli do rozwiązania problemu niezawodnościowego projektowania mechanizmu korbowego przy zmiennych rozmytych 
i przedziałowych. Trafność i skuteczność proponowanej metody oceniano za pomocą algorytmu alfa-przekrojów. Wyniki pokazują, 
że proponowana metoda stanowi odpowiednie narzędzie do przeprowadzania optymalizacji niezawodnościowej konstrukcji w 
przypadku gdy zmienne mają charakter rozmyty i przedziałowy.

Słowa kluczowe:	 zmienne rozmyte, zmienne przedziałowe, niezawodnościowa optymalizacja konstrukcji, entro-
pia, analiza najgorszego przypadku.
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with multiple membership functions, to deal with the epistemic un-
certainties in fuzzy reliability analysis, and the combined membership 
functions can be converted to equivalent probability density function 
through normalizing factor. Yang et al. [25] constructed a reliability 
analysis model via gamma process, and proposed a reliability analysis 
method to consider the non-competing relationship of multiple deg-
radation processes. He and Zhang [10] developed a fuzzy reliability 
analysis method using cellular automata (CA) and fuzzy logic for net-
work systems to solve the problem that the failure rates of networks 
may not follow the identical membership function. Based on a semi-
Markov jump model, Shen et al. [20] designed a fuzzy fault-tolerant 
controller for Takagi-Sugeno (T-S) fuzzy delayed systems. The -α
level cut method is an important approach to solve the problems with 
fuzzy variables, which can divide a fuzzy set into a series of intervals, 
and has been used for reliability analysis and design optimization 
[7]. Bagheri et al. [2-3] proposed a fuzzy structure dynamic reliabil-
ity analysis method by the -α level cut optimization method based 
on genetic algorithm. Awruch et al. [1] applied fuzzy -α level cut 
method for optimization analysis under uncertainties. He et al. [11] 
introduced the fuzzy set theory, changing failure probability function 
and dynamic fuzzy subset into Bayesian Networks method for the re-
liability analysis of multi-state system reliability analysis with fuzzy 
and dynamic information. However, these models are very complex 
and computation expensive. Mi et al. [16-17] investigated the reli-
ability analysis of complex systems under epistemic uncertainty, and 
proposed an extended probability-box to represent the epistemic un-
certainty for reliability assessment, which could deal with test, field 
and design data, and the lifetime of component could be denoted as 
interval numbers. Based on particle swarm optimization approach, 
Zhang and Chen [27] formulated an interval multi-objective optimi-
zation model for reliability redundancy allocation in interval environ-
ment. With the consideration of interval uncertainties under station-
ary Guassian excitation, Muscolino et al. [18] presented a method to 
evaluate the bounds of the interval reliability function. Wang et al. 
[23] investigated a reliability based design optimization method with 
hybrid probability and interval parameters, and adopted approximate 
reliability analysis method to improve computational efficiency. Aim 
to the spatially dependent uncertainties in system inputs, Wu and Gao 
[24] proposed the concept of random and interval fields and extended 
unified interval stochastic sampling method for static reliability anal-
ysis. Chen et al. [6] proposed the interval type-2 fuzzy multi-objective 
optimization method for reliability redundancy allocation with dif-
ferent types of uncertainties. For overcome the problem of reliability 
analysis with fuzzy and random uncertainties, Zhang et al. [28] de-
veloped a chance theory using the multi-state performance reliability 
model. Peng et al. [19] demonstrated a hybrid first order reliability 
analysis method for structural system with interval, sparse and statis-
tical variables, and interval variables were converted to probabilistic 
variables by a uniformity method. Gao et al. [8] presented a unified 
interval stochastic reliability sampling method to investigate the ro-
bust reliability analysis of structural with mixture of stochastic and 
non-stochastic uncertainty.

In a word, different types of uncertainty variables are existing in 
engineering, and there are many solutions for reliability-based design 
optimization, the reliability analysis or optimization design methods 
under fuzzy and interval variables, however, are complex and com-
putationally expensive. To make up this disadvantage, the reliability-
based design optimization for system with fuzzy and interval vari-
ables is investigated in this paper. The key points contain reliability 
analysis based on the worst case analysis of interval variables and op-
timization design based on an equivalent conversion method. The rest 
of this paper is organized as follows. The entropy-based equivalent 
conversion method is proposed in Section 2, and fuzzy variables are 
converted to random variables in Gaussian space. Section 3 develops 
an entropy-based sequential optimization and reliability assessment 

approach based on the worst case analysis of the interval variables, 
and the optimization strategy under fuzzy and interval variables is 
also further addressed. To verify the accuracy and efficiency of the 
proposed method, the crank-connecting rod mechanism of an internal 
combustion engine under fuzzy and interval variables is analysed in 
Section 4. Finally, the conclusions are given in Section 5.

2. An entropy-based equivalent conversion method

2.1.	 The Equivalent Conversion Method

Generally, different types of variables are widely existed in engi-
neering practice, and the probability density functions (PDFs) of some 
variables cannot be accurately obtained. In this case, we can use fuzzy 
numbers or intervals to model them. Thus the research on reliability-
based design optimization method under fuzzy and interval variables 
is important. The interval Monte Carlo simulation (IMCS), extremum 
method, and saddlepoint approximation (SPA) can be used for relia-
bility-based design optimization under interval variables. Thus, how 
to deal with the fuzzy variables is critical for system reliability analy-
sis and design optimization. The fuzzy set decomposition theorem is a 
basic theorem in fuzzy set theory and a fuzzy set can be divided into a 
series of intervals by -α level cut method with high accuracy in com-
putation [1]. Thus -α level cut method is usually applied to deal with 
fuzzy variables, but it is complex and computationally expensive. In 
this section, an equivalent conversion method based on entropy is pro-
posed, then reliability-based design with fuzzy and interval variables 
can be solved based on this equivalent conversion method.

According to [5, 29], the probabilistic entropy of a random vari-
able X  can be defined as:

	 ( ) ( )ln dX X XH f x f x x+∞
−∞

= −∫ 	 (1)

where XH  is the probabilistic entropy, and ( )Xf x  is the PDF of the 
random variable X .

Assuming that the random variable X  follows a normal distribu-
tion with the mean μ and standard deviation σ, then Eq. (1) can be 
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Assuming that X is a continuous fuzzy variable which can be 
denoted as ( ) ( )/ , ,lb ub

XU x x x U U Uµ  ∈ =  ∫ 

, where ( )X xµ


 is 

the membership function, and lbU  and ubU  are the lower and up-
per bounds, respectively. Then the definition of fuzzy entropy can be 
given by [5, 30]:

	 ( ) ( )ln dX X XUG x x xµ µ′ ′= −∫  

 	 (3)

where XG


 denotes the fuzzy entropy of X , 

( ) ( ) ( )( )/ d
ub

lb
U

X X XU
x x x xµ µ µ′ = ∫ 



, and ( )X xµ′


 represents the 

standard membership function.
As aforementioned, the reliability-based design optimization un-

der fuzzy variables is difficult. If fuzzy variables can be converted to 
the variables which are easy to deal with by a reasonable approach, 
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the difficulty of reliability-based design optimization will be reduced. 
Thus, the conception of equivalent random variable is proposed in this 
paper. According to Refs. [4-5, 29-30], the equivalent normal random 
variable can be defined as a variable which satisfies:

	
eqX XH G=



 	 (4)

where eqX  is the equivalent normal random variable, and 
eqXH  is 

the probabilistic entropy of eqX .

The mean and standard deviation of X  need to be determined to 
obtain the PDF of eqX . The standard deviation of eqX can be given 
by combining Eq. (2) with Eq. (4):

	 0.51
2

X
eq

G
X eσ

π
−=   	 (5)

where 
eqXσ  is the standard deviation of eqX .

It is obvious that the standard deviation of eqX can be obtained 
via Eq. (5). However, how to determine the mean value is a challenge. 
Generally, for normal convex fuzzy sets, the mean of eqX can be con-
sidered as the symmetrical center of the membership function. Then 
the PDF of eqX  can be expressed as:
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where ( )eqXf x  is the PDF of eqX , and x̂  is the symmetrical center 
of the membership function.

According to Eq. (3), ( )X xµ′


 has the following properties:

	 ( ) ( ) ( )/ d 0
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U

X X XUx x x xµ µ µ′ = ≥∫  

 	 (7)
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From Eqs. (7) to (8), ( )X xµ′


 satisfies the properties of PDF, thus 
( )X xµ′


 can be defined as the PDF of a continuous random variable 

nX . Denoting nX  as the nominal random variable of X , then:

	 f x x x xX X XU
U

n lb

ub
( ) = ( ) ( )∫µ µ

 

/ d  	 (9)

where ( )nXf x  represents the PDF of the continuous random variable 

nX , and ,lb ubx U U ∈   .

By combination with Eqs. (1) and (9), the probabilistic entropy 

of nX  yields:
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According to Eqs. (3) and (10), the probabilistic entropy of con-
tinuous random variable nX  equals to the fuzzy entropy of fuzzy 
variable X . In this way, fuzzy variables can be converted to equiva-
lent normal random variables.

2.2.	 The Equivalence Between X  and nX  

Based on stress-strength interference (SSI) model, the equivalence 
between the fuzzy variable X  and random variable nX  is addressed 
in this section. Assuming that the PDF and the membership function 
of the random tress S  and fuzzy strength R  are ( ) ( ), ,Sf s s∈ −∞ +∞  
and ( ) / , ,lb ub

RU r r r U U Uµ  ∈ =  ∫ 

, respectively. If A  represents 
the fuzzy safety event, and the membership function ( )A sµ



 of A  
is defined as [29-30]

For a)	 lbs U< , the system is safe absolutely, ( ) 1A sµ =


.

For b)	 ubs U> , the system is fail absolutely, ( ) 0A sµ =


.

For c)	 lb ubU s U≤ ≤ , the interval ,lb ubU U 
   can be divided into 

two parts, that is, subintervals ,lbU s 
   and , ubs U 

  . Subin-

tervals ,lbU s 
   and , ubs U 

  can be regarded as failure and 
safe domain, respectively. Herein, the membership function 

( )A sµ


 of A  can be considered as:

	  ( ) ( ) ( )d / d , ,
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  (11)

Therefore, the membership function of the fuzzy safety event can 
be expressed by the piecewise function as shown in Eq. (12):
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According to Ref. [26] and the definition of the membership func-
tion of fuzzy safety events, the probability formula of fuzzy events 
that can be defined as:
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )

d

1 d d / d d 0 d

d d
d

d

lb ub ub ub

lb lb ub

ub ub

lblb

ub

lb

f SA

U U U U
S S SR RU s U U

U U
SRU sU

S U
RU

R P A s f s s

f s s s s s s f s s f s s

s s f s s
f s s

s s

µ

µ µ

µ

µ

+∞
−∞

+∞
−∞

−∞

= =

 ′ ′= ⋅ + ⋅ + ⋅ 
 

 ′ ′ ⋅ 
 = +

∫

∫ ∫ ∫ ∫ ∫

∫ ∫
∫

∫



 







 
(14)

Assuming that S  and R  are independent, according to SSI mod-
el, the fuzzy reliability is:

	 { }PrsR R S> 



  	 (15)

where sR  is the fuzzy reliability.
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By combination with Eqs. (9) and (15), and substituting R  with 
nR , yields:
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where sR  is the reliability after equivalent conversion, and nR  is the 
nominal random variable of R .

Eq. (16) can be rewritten as Eq. (17) via integration by parts:
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Noting that when lbr U′ < , ( ) 0R rµ ′ =


, then:
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Substituting Eq. (18) into Eq. (17), yields:
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The second item of the right-hand member in Eq. (20) can be re-
written as [30]:
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Therefore, sR  can be further rewritten as Eq. (22):
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   (22)

Obviously, Eqs. (14) and (22) are identical, that is, the reliability 
calculated by the proposed equivalent conversion method is equiva-
lent to that by SSI model. Therefore, the equivalent conversion meth-
od based on entropy theory is reasonable.

For the fuzzy variable X , if the means of equivalent random var-
iable eqX  and nominal random variable nX  are the same, that is:

( ) ( ) ( ) ( ) ( )d / d d
ub ub

lb lbeq n
U U

X eq n X X XU UE X E X xf x x x x x x xµ µ µ+∞
−∞

 
= = =  

 
∫ ∫ ∫ 



 
(23)

where 
eqXµ  denotes the mean of eqX .

In Eq. (23), the integral of ( )d
ub

lb
U

XU x xµ∫ 

 is a constant, then:

( ) ( ) ( )
( )

( )1/ d d d
d

ub ub ub
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U U U
eq X X XU U UU
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E X x x x x x x x x
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µ µ µ
µ

 
= = 

 
∫ ∫ ∫

∫
  

  
(24)

Therefore, the PDF of eqX  can be expressed by Eq. (25):
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( )2
221

2

Xeq

Xeq
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X
X

f x e
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σ

πσ

−
−

=
 	 (25)

Based on entropy theory, fuzzy variables can be converted to 
equivalent normal random variables. Reliability-based design opti-
mization under fuzzy and interval variables can be converted to the 
issues with normal random variables and interval variables. Then the 
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critical point for reliability analysis and design optimization are solv-
ing the upper and lower bounds of failure probability.

3. Reliability-Based Design Optimization Based on The 
Equivalent Conversion Method

3.1.	 The Worst Case Analysis under Fuzzy and Interval Vari-
ables

When the reliability constraints contain both random variables 
and interval variables, the equivalent conversion method abovemen-
tioned is applied to convert the fuzzy variables to the normal ran-
dom variables firstly. And the combination of interval variables in the 
worst case is obtained. Finally, the double-loops method and SORA 
are applied to reliability-based design optimization, respectively, for 
the worst case.

The reliability-based design optimization model under mixed 
fuzzy variables and interval variables in the worst case can be ex-
pressed as:

	
( )

( ){ }

min , ,

. . Pr , , 0 , 1,2, ,i worst worst i

h

s t g R i m≥ ≥ =
d

d X Y

d x y



 




 	 (26)

where X  and Y denote the vectors of fuzzy random variables and 
interval variables, respectively, worstx  is the combination of fuzzy 
random variables in the worst case, and worsty  is the combination of 
interval variables in the worst case.

The above-mentioned model contains fuzzy variables, and the 
equivalent conversion the fuzzy variables is used. Lei and Chen [13] 
calculated the fuzzy entropy of three different membership functions 
as follows.

The triangle distributiona)	
    The membership function is:

	 ( )
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1
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2
2
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,

x a a x a
a a

x
a x a x a
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 −

 	 (27)

    The fuzzy entropy satisfies:
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 	 (28)

The trapezium distributionb)	
The membership function is:
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The fuzzy entropy satisfies:
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The c)	 Γ  distribution

    The membership function is:
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The fuzzy entropy satisfies:
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When the membership function of the fuzzy variable is symmet-
ric, the mean of the equivalent normal variable can be regarded as 
the symmetric center of the membership function. If the member-
ship function of the fuzzy variable is asymmetric and included in the 
above-mentioned three types, the standard deviation of the equivalent 
normal random variable can be calculated with the corresponding 
fuzzy entropy and Eq. (5), then the mean of the equivalent normal ran-
dom variable is solved through Eq. (24) and the corresponding mem-
bership function. Otherwise, the standard deviation of the equivalent 
normal random variable can be calculated with the corresponding 
membership function, Eqs. (3) and (5). And the mean of the equiva-
lent normal random variable can be obtained with the membership 
function and Eq. (24).

Suppose that a vector ( )1 2, , , nX X X=X   

  of fuzzy variables and 

the equivalent vector after conversion is ( )1 2, , ,eq eqeq eq
nX X X=X  , 

then the model described in Eq. (26) can be converted to:
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( ){ }
min , ,

. . Pr , , 0 , 1,2, ,
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i worst worst i

h

s t g R i m≥ ≥ =

d
d X Y

d x y 

	 (33)

where eqX  is the vector of equivalent normal random variables, 
eq
worstx  is the combination of equivalent normal random variables in 

the worst case.
From the equivalent conversion, the reliability based design op-

timization under fuzzy and interval variables is transformed into the 
design optimization under normal random variables and interval vari-
ables. The optimal solutions of the reliability–based design optimiza-
tion can be solved quickly combined with the SORA method.

3.2.	 Entropy-Based Sequential Optimization and Reliability 
Assessment(E-SORA)

The basic idea of SORA is decomposing the original reliability-
based design optimization into a series of independent deterministic 
optimizations and reliability analyses. During the overall process, 
the number of design optimization equals to reliability analyses. 
Therefore, the number of function evaluations is greatly reduced 
comparing with the double-loops method [15]. Therefore, SORA is 
further developed based on entropy theory, namely, E-SORA, which 
is based on the equivalent conversion method proposed in section 2. 
The E-SORA method is an extension of SORA, and it can be used 
for system with the mixture of fuzzy and interval variables. It can be 
divided into two parts: one is the equivalent conversion based on the 
entropy theory, the other is the reliability-based design optimization 
with SORA under the worst case. The flow chart of the proposed 
E-SORA is shown in Fig. 1.
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When the deterministic optimization in Sequence 1 is performed, 
the combination of interval variables in the worst case and the most 
probable point (MPP) are unknown. For convenience, they can be set 
as the means of interval and random variables, respectively. Firstly, 
the optimal design 1d  can be obtained through the deterministic op-
timization in Sequence 1, and then reliability analysis is performed 
to find the MPP , ,1

,
iMPP R

worst iu  in the worst case and the combination 
1

,worst iy  of interval variables. At this point, some reliability constrains 

may not be satisfied, such as ( ), ,1 1
,, ,, , 0i iR MPP R

i worst iworst i worst iz g= ≥d u y
 
. 

Therefore, , ,1
,

iMPP R
worst iu  and 1

,worst iy  are set as the new initial points, 
which are applied to build the deterministic design optimization in 
Sequence 2. The new model can be denoted as:

	
min , ,

. . , ,, ,
, ,

,

d
Y

d u y

h

s t z g

x

worst i
R

i worst i
MPP R

worst i
i i

d µµ( )
= 1 1(( ) ≥ =0 1 2, , , ,i m

,   (34)

Assuming that the reliability requirements in Sequence 1 are not 
satisfied, then the design variables are modified to improve the reli-
ability during the deterministic optimization process of Sequence 2. If 
the optimal solutions 2d  obtained through the deterministic optimi-
zation of Sequence 2 do not satisfy some reliability constraints, then a 
new optimization model in Sequence 3 is built by combining with the 
MPP , , 2

,
iMPP R

worst iu  and the combination 2
,worst iy  of interval variables 

under the worst case. Repeating above processes until all reliability 
constraints and stopping criterions are satisfied.

4. Numerical Example 

The reliability based design optimization of the crank link mecha-
nism of an internal combustion engine is used to illustrate the pro-
posed method. The structure of the crank link mechanism is shown 
in Fig. 2.

Simplifying the crank-link mechanism in Fig. 2 and a kinematic 
scheme of mechanism as shown in Fig. 3 is obtained.

Due to the uncertainty in manufacturing and assembling, the 
lengths of 1 2O O  and 2 3O O  are treated as random variables 1l  and 

2l  , respectively. The working process of an internal combustion 
engine contains different operating conditions such as startup, accel-
eration, turn and brake. The thrust of the piston varies with different 
operating conditions and the thrust is also uncertain. Therefore, the 
thrust F  is regarded as a fuzzy variable. The elastic modulus is de-
fined as the ratio of the stress to the strain in an ideal material with 
small deformation. In practical engineering, the materials are often 
not ideal with the uncertainty in the manufacturing and the uncertainty 

of the material properties, the elastic modulus E  is a fuzzy variable. 
The yield strength fluctuates near a fixed value due to the uncertainty 
of testing error, measurement error and personnel factor during the 
measurement process, thus it is denoted as a fuzzy variable sσ . The 
distribution types and parameters of the random variables 1l  and 2l  
are listed in Tab. 1.

The membership function of the thrust F  of the piston follows 
a triangular distribution, and the expression can be described by Eq. 
(35), the function graph is shown in Fig. 4.

	 ( )
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F

x x
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x x
µ

− ≤ ≤=  − < ≤




, 	 (35)

The membership function of the elastic modulus E  follow trian-
gular distribution, and the expression can be described by Eq. (36), 
the function graph is shown in Fig. 5.
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x x
x

x x
µ

− ≤ ≤=  − < ≤


 , 	 (36)

Fig. 2. The crank-link mechanism of an internal combustion engine

Fig. 3. The kinematic scheme of mechanism of an internal combustion engine

Table 1.	 The distribution types and parameters of the random variables

Symbols Random 
variables

Distribu-
tion types Means Standard 

deviations

1x 1l Normal 100mm 1mm

2x 2l Normal 300mm 3mm

Fig. 1. The flow chart of E-SORA
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Fig. 5. The membership function of the elastic modulus E

The membership function of the yield strength sσ  is also a tri-
angular distribution, and the expression can be described by Eq. (37), 
the function graph is shown in Fig. 6.
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, 	 (37)

Owing to the technological uncertainty, manufacturing errors and 
other uncertainty factors, the probability density function of the dy-
namic friction coefficient kµ  is unknown, except for the approximate 
value range. To satisfy diverse vehicle models or meet different work-
ing requirements, the offset h  is changeable, and its range is known. 
Therefore, h  and kµ  can be set as interval variables and the value 
ranges are listed in Tab. 2.

The optimization is to determine the inner and outer diameters 
( )1 11 80d d≤ ≤  and ( )2 210 100d d≤ ≤  of the connecting rods, which 

make the total weight of the crank and the connecting rods lightest 
under the constraints that the contact and the bending reliabilities are 
0.9999. This problem is equivalent to find 1d  and 2d  which mini-
mize the cross sectional area under the required reliability. The cross 
sectional area of the connecting rods can be expressed as:

	 ( ) ( )2 2
2 14

S d dπ
= −d . 	 (38)

The strength constraint and bending stress constraint of the con-
necting rod can respectively be expressed as:
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and:
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where ( ) ( )1 2 1 2, ,x x l l= =X  and ( ) ( )1 2, , ky y h µ= =Y .

The traditional deterministic optimization model can be denoted 
by:
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. (41)

Since the reliabilities of tension and bending are 0.9999, then the 
reliability based design optimization model is given by:

Fig. 4. The membership function of the thrust F

Fig. 6. The membership function of the yield strength sσ

Table 2.	 The value ranges of interval variables

Symbols Interval variables The lower 
bounds

The upper 
bounds

1y h 100mm 150mm

2y kµ 0.15 0.25
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( ) ( )

( ) ( )

( ) ( )

( )
( ) ( )

( )

2 2
2 1

2 1
1 2 2 2 2

2 1 2 1

3 4 4
2 1 2 1

2 2 2 22 2 1

1 2 1 2

min
4

4
. . Pr , , 0 0.9999;

Pr , , 0 0.9999;
64

1 80,10 100,

s

k

k

S d d

F l l
s t g

l l h h d d

E d d F l l
g

l l l h h

d d d d

π

σ
π µ

π

µ

= −

 
 − = − ≥ ≥ 

  − − − −    
 − − = − ≥ ≥ 
 − − − 
≤ ≤ ≤ ≤ <

d
d

d X Y

d X Y



 

 





 



 
(42)

In Eq. (42), the thrust F , the elastic modulus E , and the yield 
strength sσ  are fuzzy variables. Therefore, this is a reliability-based 
design optimization under the mixture of fuzzy variables and inter-
val variables. According to the equivalent conversion method de-
scribed in Section 2, the fuzzy variables can be converted to normal 
random variables, and the original optimization model is changed 
to an optimization model under the normal random variables and 
interval variables.

Firstly, the thrust F , the  elastic modulus E , and the yield 
strength sσ  can be equivalently converted to normal random varia-

bles eqF , eqE , and eq
sσ , with ( )2250,19.95N , ( )2200,3.99N , 

( )2290,6.69N , respectively, where ( )N ⋅  represents a normal distri-
bution. After the equivalent conversion, the reliability-based design 
optimization model can be described by Eq. (43).

With the equivalent conversion, the optimal solutions can be ob-
tained through the E-SORA and the double-loops method. The -α
level cut method is an important approach to solve the problems 
under fuzzy variables with high accuracy [7]. Thus it is used for 
comparison in this paper, and the resluts with different methods can 
be seen in Tab. 3.

From Tab. 3, when the objective function reaches the minimum 
form the deterministic design optimization, the design no satisfies the 
reliability constrains. The E-SORA and the double-loops method have 
considered the reliability constrains. To verify the accuracy of the 
equivalent conversion method, the optimal solutions of the -α level 
cut method are used to compare with those of the E-SORA method. 
The reliability-based design optimization with both the double-loops 

method and the -α level cut method are repeated double loops proc-
ess. The proposed E-SORA method decouples the original double 
loops to improve computational efficiency.
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5. Conclusions

Based on entropy theory, the fuzzy entropy of a fuzzy variable 
is defined, and the fuzzy variables can be equivalently converted to 
normal random variables. Then the reliability-based design optimiza-
tion under the mixture of fuzzy variables and interval variables can be 
changed to a model with normal random variables and interval vari-
ables. Finally, by combining with the worst case analysis method, the 
SORA method are applied after conversion. The proposed entropy-
based equivalent conversion method provides a new idea for the re-
liability-based design optimization under different types of uncertain 
variables. The results has shown that the optimal solutions based on 
the worst case analysis is conservative, and the proposed method can 
ensure the safety for systems with limited information.
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Table 3.	 The solutions for different optimal methods

Deterministic optimiza-
tion E-SORA Double-loops -α level cut

The optimal variables  ( )1 2,d d=d (20.30,40.61) (27.58,55.99) (27.58,55.99) (27.52,55.85)

The objective function ( )S d 971.60 1864.71 1864.71 1855.01

1g  in the worst case - 0 0 0.12

2g  in the worst case - 4.15 4.15 3.24

( )1 2,y y  in the worst case - (150,0.25) (150,0.25) (150,0.25)

The number of iterations 19 408 1032 1053
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